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ABSTRACT

Matching two or more users with related interests is an important
and general primitive, applicable to a wide range of scenarios in-
cluding job hunting, friend finding, and dating services. Existing
on-line matching services requires participants to trust a third party
server with their preferences. This raises security and privacy issues.
In this paper, we tackle this problem by introducing two privacy-
preserving protocols: server-led matching and user-led matching.
In the first protocol, potential matching pairs (e.g., users, compa-
nies) are selected by the server, which collects and combines each
party’s preference. In the second, entities are allowed to express
their preference for any party—regardless of whether the other party
is known to the server. With server-led matching, users reveal no in-
formation to the server; the server’s role is simply to relay messages.
In user-led matching, the server only learns which users match. Our
protocols are scalable, i.e., preferences can be matched in constant
time. We formally define security and functionality requirements
for generic server-led and user-led matching protocols, and provide
security proofs for our instantiations within this framework.

1. INTRODUCTION

User matching is the process by which two parties, say Alice and
Bob, express their mutual interest by issuing commitments to each
other. Matching parties with related interests is an important and
general primitive, applicable to a wide range of scenarios including
job hunting, friend finding, dating services, and on-line bidding.
In broad terms, there exist two types of user matching: one where
the server is in charge of selecting two parties (Alice and Bob),
who then indicate whether there is mutual interest (i.e., they issue
yes or N0 commitments); and another where users independently
select a party they are interested in, and issue a commitment for that
party. We refer to the two types as server-led matching and user-led
matching respectively.

In a non-cryptographic setting, these functionalities are usually
achieved by relying on a trusted server that acts as an interme-
diary between the Alice and Bob (e.g., [8, 12, 16,20, 25]). The
server has full knowledge of the preferences expressed by all users,
which causes considerable privacy issues: for server-led match-
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ing, the server can leak (either intentionally, or accidentally) users’
interests—or lack thereof; for user-led matching, the server can leak
un-matched commitments, with possibly professional and social
repercussions for the users. The goal of privacy-preserving user
matching is to implement server-led and user-led matching without
revealing user preferences to the server, and possibly to the other
user, unless the two users independently select each other. In this
setting, the trusted server is replaced with a secure cryptographic
protocol, run by Alice, Bob, and an untrusted server.

Our server-led protocol allows users to upload a public profile
(e.g., a nickname and a picture, a set of skills, etc.) which the
server then uses to find candidate pairs, for matching. When a
pair (Alice, Bob) has been identified, the server sends Bob’s profile
to Alice and Alice’s profile to Bob. The parties decide whether
they want to commit to each other, and thus learn the outcome of
the protocol, which is either (i) both users decided to commit; or
(i1) at least one of the users decided not to commit. No additional
information is revealed to the parties (e.g., if Alice does not commit
to Bob, she does not learn if Bob committed to her). The matching
server never learns the choice of either participant (i.e., whether their
commitment was Yes or N0), so no information about the user’s
preferences is revealed.

In our user-led protocol, users discover each other outside of the
matching system, e.g., by knowing each other in real life or through
social media. Then, they register with the user-led matching server
using a pseudonymous (e.g., their email address, or their Reddit user
ID) in order to commit to each other. Alice issues a commitment
to Bob that indicate her willingness to be matched with Bob, if
and only if Bob also (independently) commits to Alice. With this
protocol, un-matched commitments only reveal who issued them,
and not who they are issued for.

There are a number of problems that are related to privacy-preserving
matching, such as secret handshakes [3], private set intersection [14]
(and cardinality-only private set intersection [7]), trust negotia-
tion [4], hidden credentials [17], oblivious envelopes [19], and
policy-based encryption [1]. However, none of these tools can
satisfactory address this problem. We elaborate on this in Section 2.

Contributions. We formalize the notions of privacy-preserving
user-led and server-led matching. We then introduce two protocols
which implement these functionalities. Our first protocol improves
on existing work on secure user-led matching in terms of efficiency
and simplicity. Our second protocol is, to our knowledge, the first to
implement secure server-led matching. This is an important security
primitive, because its non-private counterpart (i.e., a trusted server



that performs this functionality) is widely used in services such as
Tinder [25], Hitch [16], and Cuddlr [8]. Furthermore, Facebook [12],
Twitter [28] and Linked-In [20] offer user matching as part of their
services.

Although our protocols are presented with two users, they naturally
extend to any number of users; in the rest of the paper, Alice and
Bob are two arbitrary users from the set of all users. Since existing
social networks have millions (or even billions [13]) of users, prac-
tical privacy-preserving matching protocols must be very efficient.
For this reason, all functionalities of our protocols are designed to
require constant (i.e., O(1)) computation on all parties. Moreover,
our techniques do not require users who are not involved in a specific
match to participate in the protocol.

Our protocols are formally proven secure in our framework. Unlike
previous work [2,21,30], we relax the requirement for anonymous
communication channels. Removing this requirement rules out
any direct communication between the two parties, since it would
allow them to identify each other using artifacts of the underlying
communication channel, such as IP addresses.

Organization.  The rest of the paper is organized as follows.
Section 2 reviews the most prominent problems related to privacy-
preserving matching, and discusses why they do not address it;
the same section then discusses related work. Section 3 formally
presents functionality and security properties of privacy-preserving
matching. Protocol instantiations are introduced in Section 4, while
their security analysis is addressed in Section 5. Section 6 presents
extensions to our protocols. We conclude in Section 7.

2. RELATED WORK AND UNRELATED
PROBLEMS

In this section, we review the most prominent related problems, and
briefly discuss their relationship with privacy-preserving server-led
and user-led matching. We follow this with a review of related work.

2.1 (Un-) Related Problems

As noted by Shin and Gligor in [24], there are a variety of problems
that are somewhat related to privacy-preserving user matching, and
for which secure and efficient protocols are known. Direct applica-
tion of secure protocols for these problems in our setting, however,
is not satisfactory for either security or efficiency reasons.

Secret handshakes. Secret handshakes allow two mutually un-
trusted parties to securely determine if they belong to the same
group [3,5,9,27]. There are clearly similarities between privacy-
preserving matching and secret handshakes. However, protocols
for secret handshake require either a shared secret between parties
who belong to the same group, or the use of a certification author-
ity. Neither is required in our server-led and user-led protocols.
Our protocols are therefore suitable when the parties have no prior
knowledge of each other.

Trust Negotiation. Clients can perform authentication without
revealing the full extent of their credentials through trust negotiation
protocols [4]. In principle, these protocols can be used to address
privacy-preserving matching. However, analogously to PSI based
instantiations, the resulting constructions will be inefficient, less
secure and less practical.

Other Related Problems. Shin and Gligor in [23] mention several
problems that are related to our setting, such as hidden creden-
tials [17], oblivious envelopes [19] and policy-based encryption [1].
However, as noted in [23] these techniques focus mainly on the
privacy of entities’ attributes rather than on users’ identity. Using
these tools to construct user-led matching, if Alice commits to Bob
she would also reveal her identity to him. This clearly does not
satisfy our privacy requirement.

2.2 Related Work

Private Matchmaking. Baldwin and Gramlich defined the prob-
lem of Anonymous Matching in [2]. The paper addresses a problem
that roughly corresponds to our user-chosen scenario, albeit not very
efficiently. The paper proposes that “jokers” add fake transactions
to the communication channel to “hide” real transactions. Baldwin
and Gramlich’s protocol requires a third party M to do the match-
ing, and yet another party that the users trust to issue keys. Users
exchange keys via M, who does not learn the key but does learn
that the users are communicating. Fake transactions are supposed
to make it more difficult for the server to detect actual users. The
protocol was found to be vulnerable to message replacement attack
by Zhang and Needham [30].

Meadows proposed an improvement [21] to the protocol by Baldwin
and Gramlich. The protocol still requires a trusted third party which
must be online when the users sign up for the system. The scenario
presented in [21] consists of two representatives from two different
companies that trust each other. Key exchange is handled between
the companies, and focus is on immediate—rather then eventual—
communication. The protocol in [21] is based on DH and assumes
the two parties each have a secret. The objective is to check if the
two secrets are the same without revealing them to each other.

In 2008, and later in 2013 Shin and Gligor [23, 24] revisited the
problem of match-making protocols and added resistance to oft-
line guessing attacks and forward secrecy to the list of properties.
Their protocol is based on secure password-based authenticated key
exchange (PAKE). Although they provide a viable technique for
user-led matching, their approach requires anonymous channels and
does not address server-led matching.

Xie and Hengartner investigated in 2011 the problem of finding
matches that fulfill some criteria, such as having shared interests [29].
The work is done in the context of mobile social networking, and
uses a variant of private set intersection to achieve its goals. Xie and
Hengartner’s protocol can be compared with our user-led matching
protocol, though it is significantly less efficient. It is not clear
whether it is possible to construct a server-led matching protocol
using the technique in [29], because there is no server involved in
the protocol.

Private Set Intersection. Private set intersection (PSI) [14] allows
two parties to determine which subset of elements appear in both
their input sets, without revealing additional information. PSI can
be used to construct secure privacy-preserving matching, albeit
inefficiently (in the user-led case) or only with only honest-but-
curious users (in the server-led case). Next, we briefly discuss how
to use PSI to implement user-led and server-led privacy-preserving
matching.

To implement user-led privacy-preserving matching, Alice commits
to Bob, by adding element {Alice, Bob) to her set, where the two



elements are sorted, e.g., using lexicographic order. All users then
engage in a separate instance of PSI with each user in the system.
The output of Alice and Bob’s PSI instance is (Alice, Bob) if and
only if they committed to each other (i.e., both their sets contain
(Alice, Bob)). The cost of determining new matches is therefore
O(n) instances of PSI for each user. The server must therefore
mediate O(n?) PSI instances. It is an open problem whether PSI
can be used to implement user-led matching with cost O(1) for the
users.

The use of PSI looks more promising for server-led matching. How-
ever the resulting protocol, discussed next, is inefficient, and is
secure only in presence of semi-honest users. The server asks Alice
and Bob if they would like to match. If Alice wishes to match with
Bob, she creates a set containing an agreed-upon public constant.
Otherwise, her set contains one random value. Bob builds his set
analogously. Then Alice and Bob engage in PSI, using the server to
forward protocol messages in order to conceal their real identity, and
learn if both their sets contain the public constant. Let Alice be the
party that learns the protocol’s output. A malicious Alice could com-
mit to Bob, and then arbitrarily replace the protocol’s output, hence
learning Bob’s commitment without necessarily committing to him.
Furthermore, this approach requires multiple communication rounds
between Alice and Bob.

Server-Assisted Private Set Intersection and Private Equality
Test. Kamara et al. introduced server-assisted PSI (SAPSI) in [18].
With SAPSI, two or more clients agree on a shared secret key &, and
independently compute a PRP (keyed with k) over the elements of
their input sets. The result of the permutations is sent to the server,
which computes the intersection of these values and returns it to
the clients. Because k is not known to the server, and the server
does not collude with any other party, the intersection (and nothing
else) is disclosed exclusively to the clients. Although the protocol is
very efficient (communication and computation complexity is linear
in the sum of the number of elements in the clients’ sets, and all
operations can be implemented using symmetric cryptography), we
argue that it is not suitable for implementing user-led and server-led
privacy-preserving matching. When used for user-led matching, the
protocol assumes that all users share a secret key k, while the server
has no access to k. This is clearly not possible in practice. Kamara
et al. also present a technique for implementing server-aided private
equality test. Although their protocol can be used to implement
server-led privacy-preserving matching, it requires a substantially
larger exchange of messages between the parties than our approach
(due to the dummies used in the protocol). Moreover, it involves
several rounds of communication between the protocol participants.
If the parties are not on-line at the same time, this can possibly lead
to substantial delays in the execution of the protocol.

3. SERVER-LED AND USER-LED
MATCHING

In this section we formally define the functionality and security of
our server-led and user-led matching protocols. SystemSetup algo-
rithm is part of both protocols, and generates the system parameters
which are subsequently made publicly available to all parties. This
step is performed only once.

3.1 Protocol Functionality

Server-Led Matching Protocol. A server-led matching protocol is
defined by a tuple of efficient algorithms (SystemSetup, UserSetup,

Challenge, Response, Verify, Commit, Combine, Open), described
below, and combined in three phases: Registration, Query and No-
tify, illustrated in Figure 1.

In the Registration phase, Alice generates a public-private pair of
values using UserSetup. She then sends the public value to the
server, which challenges her to prove that she knows the correspond-
ing private value. During the Query phase, the server sends Bob’s
public parameter and description to Alice, who issues a commit-
ment computed using the Commit algorithm, on input her decision,
private parameter and Bob’s public parameter. (In practice, the
server would concurrently perform the Query phase with Alice and
Bob.) Once the server receives both Alice and Bob’s commitments,
it combines them using the Combine algorithm. Finally, in the
Notify phase, the server returns the combined commitment to the
users, who learn the resulting decision after invoking the Open al-
gorithm. SystemSetup, UserSetup, Commit, Combine and Open
are formally defined next:

DEFINITION 1. A server-led matching protocol involves the fol-
lowing efficient algorithms:

e SystemSetup: a probabilistic algorithm that, on input a se-
curity parameter 1%, outputs a public system parameter ®.

e UserSetup: a probabilistic algorithm that takes as input ®
and outputs a secret parameter x 4 and a public parameter
ya for Alice.

e Challenge: a probabilistic algorithm that takes as input y a,
and outputs a challenge v and a (secret) response v.

e Response: a probabilistic algorithm that takes as input v and
x A, and outputs a response o A.

e Verify: a probabilistic algorithm that takes as input o 4 and
v, and outputs 1 iff the o 4 is a correct response.

o Commit: a probabilistic algorithm that takes as input Alice’s
decision dg € {yes,no}, xa, Bob’s public parameter yp,
and outputs a commitment ca.

o Combine: a probabilistic algorithm that takes as input two
commitments ca, cg and outputs a combined commitment
cap. If da = dp = vyes, then cap is a yes commitment,
otherwise cApB is a no commitment.

e Open: a deterministic algorithm that takes as input ca, T a,
yB, and outputs yes if cap is a yes commitment, and no
otherwise.

User-Led Matching Protocol. A user-led matching protocol is de-
fined by a tuple of efficient algorithms (SystemSetup, UserSetup,
Challenge, Response, Verify, Commit, Match, Open). These algo-
rithms are combined in four phases (Registration, Lookup, Commit
and Check) as illustrated in Figure 2. Similarly to the server-led
matching protocol, during the Registration phase Alice generates
a public-private pair of values using UserSetup. She then sends
the public value y4 to the server, which challenges her to prove
knowledge of the private value x 4. In the lookup phase, Alice
requests the public parameter of a user of her choice—say, Bob.
If Bob has registered, the server returns his public parameter yp.
Otherwise, it returns a properly distributed random value. During
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the Commit phase, Alice decides to commit to Bob. To do so, she
computes a commitment c4 using her own private value x4 and
the public value of Bob yp. The server stores ca together with
Alice’s identity. Finally, in the Check phase, Alice sends a “Check”
message to the server, which computes the set of values M that
represents matching commitments for Alice. Alice uses the Open
algorithm on M to determine which users, to whom she committed,
also committed to her.

SystemSetup, UserSetup, Challenge, Response, Verify, Commit,
Match and Open are presented in Definition 2. We indicate the set
of all users with ¢/, and the set of all commitments sent to the server
as D.

DEFINITION 2. A user-led matching protocol consists of the
following efficient algorithms:

e SystemSetup: a probabilistic algorithm that takes as input a
security parameter 1%, and outputs a public system parameter
.

e UserSetup: a probabilistic algorithm that takes as input ®
and outputs a secret parameter x o and a public parameter
ya for Alice.

o Challenge: a probabilistic algorithm that takes as input ya,
and outputs a challenge v and a (secret) response v.

e Response: a probabilistic algorithm that takes as input v and
T A, and outputs a response o A.

e Verify: a probabilistic algorithm that takes as input o 4 and
v, and outputs 1 iff the o 4 is a correct response.

e Commit: a probabilistic algorithm that takes as input T 4,
Bob’s public parameter yp, and outputs a commitment cAp

e Match: a deterministic algorithm that takes as input the set
of all commitments from Alice, defined as:

C={cai|cai €D A cai + Commit(mA,yi)}ieu

and a set of commitments issued by all users except for Alice,
ie.:

S £ {caj|caj ED A caj Commit(mj,yA)}jaw)
U {Clj | cy € D A Clj Commit(:pl,yj)}l)je(u,)
where U' = U \ {Alice}. This algorithm returns a set
M = {w; | (cai € C)A(caj € S)A(i = j)A(w;i =
f(cai,cay))} for some function f.

e Open: a deterministic algorithm that takes as input M, x 4,
{v:}, and outputs the set of users {i | w; € M}.

3.2 Security Properties of Matching Protocols
Both server-led and user-led matching protocols require a registra-
tion phase during which Alice proves that she is the owner of the
public key being registered. Therefore, all security definitions in
which A acts as the server assume that all users have registered their
public parameters with A.

Server-Led Matching. A secure server-led matching protocol
must prevent the server from learning any information about the
commitment issued by Alice and Bob, i.e., the server should learn
neither the content of the individual commitments, nor the result
of a match. To formally define this notion, we introduce an experi-
ment where the server is allowed to provide Alice and Bob with two
pairs of decisions (da,0,dp,0) and (da,1,ds,1) of its choice (e.g.,
(yes, no) and (no, no)). If the protocol reveals no information about
the individual decisions, or about the resulting output, then the server
cannot determine whether Alice and Bob selected (da,0,dp,0) or
(da,1,dB,1) as their inputs. We formalize this notion as indistin-
guishability under chosen commitments attack (IND-CxA):

Experiment IND-CxA 4 (k)

1. A participates in the server-led matching protocol as the
server, and interacts with Alice and Bob (both honest users).
A is provided with the public parameters of the users through
the registration phase, which is executed by Alice and Bob
with A.
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2. A selects two pairs of decisions (d4,0,dp,0) and (da,1,dB,1),
where d, 3 € {yes,no} (u € {4, B} and 3 € {0,1}), and
sends them to the honest users.

3. Alice and Bob select a common random bit b and run the
protocol with A, using da and dp, as their decision, re-
spectively.

4. At the end of the protocol execution, A outputs b’ as its guess
for b. The experiment outputs 1 if b’ = b, and 0 otherwise.

DEFINITION 3 (IND-CxA SECURITY). A server-led matching
protocol has indistinguishable commitments under chosen commit-
ment attack if there exists a negligible function negl such that for
any PPT A, Pr[IND-CxA 4 (k) = 1] < 1/2 + negl(k).

Another important security property of a server-led matching proto-
col is the inability of Alice to learn information about Bob’s decision
when she issues a N0 commitment. (If Alice issues a yes commit-
ment, she always learns Bob’s decision.) This property is captured
by negative commitment attack (IND-NCA) security:

Experiment IND-NCA 4 ()

1. A participates in the protocol as a user, and interacts with an
honest server. The server also interacts with a honest user
Bob.

2. Aissues a commitment, and Bob selects a random bit b. If
b = 0, then Bob issues a yes commitment; otherwise, he
issues a NO commitment.

3. At the end of the protocol execution, A outputs b’ as its guess
for b. The experiment outputs 1 if ¥’ = b and A’s commitment
is no, and O otherwise.

DEFINITION 4  (IND-NCA SECURITY). A server-led match-
ing protocol has indistinguishable commitments under negative
commitment attack if there exists a negligible function negl such
that for any PPT A, Pr[IND-NCA 4 (k) = 1] < 1/2 + negl(k).

User-Led Matching. In a secure user-led matching protocol, the
server must not be able to determine which user Alice has committed
to, unless there already exists a corresponding commitment from
that user to Alice. To represent this, we allow Alice to commit to one
of two users Up and U1, who did not commit to her, and challenge
the adversary to determine who Alice committed to. This notion is
captured by the server matching attack (IND-SMA) experiment.

Experiment IND-SMA 4 (k)

1. A participates in the protocol as the server, and interacts with
an honest user Alice.

2. A performs registration with Alice and two users, Up and Uy .

3. Alice is given two sets of public parameters, corresponding
to Up and U;.

4. Alice selects a random bit b, commits to U, and sends the
commitment to A.



5. At the end of the protocol execution, A outputs b’ as its guess
for b. The experiments outputs 1 if &’ = b, and 0 otherwise.

DEFINITION 5 (IND-SMA SECURITY). A user-led matching
protocol has indistinguishable commitments under server-matching
attack if there exists a negligible function neg| such that for any PPT
A, Pr[IND-SMA 4 (k) = 1] < 1/2 + negl(k).

A secure user-led matching protocol must prevent a malicious user
from forging commitments from a different user. This notion is
captured by our forging commitment attack experiment (FCA), pre-
sented next. In our protocol instantiation (see Section 4), IND-SMA
security implies FCA security. However in general this is not true.

Experiment FCA 4 (k)

1. A participates in the user-led matching protocol as a user, and
interacts with an honest server.

2. A performs the lookup protocol multiple times, obtaining
public parameters of users Uy, . .., U; as well as their corre-
sponding secret information.

3. Eventually, A is given the public parameter of two new users
U, and Up and outputs a value C.

4. The experiment outputs 1 if C' is a valid commitment that
binds U4 and Up; otherwise it outputs 0.

DEFINITION 6 (FCA SECURITY). A user-led matching proto-
col has unforgeable commitments under a forging commitment at-
tack if there exists a negligible function negl such that for any PPT
A, Pr[FCA 4(k) = 1] < negl(k).

4. PROTOCOL INSTANTIATIONS

In this section we present our instantiation server-led and user-led
matching.

4.1 Server-Led Matching Protocol

Our server-led matching protocol uses a collision-resistant hash
function H(-) and a semantically secure additively homomorphic
encryption scheme: Setup(-), Enc(+), Dec(-). In an additively ho-
momorphic encryption scheme, Enc(m1) - Enc(mz) = Enc(mq +
mg), which also implies that Enc(m)® = Enc(a - m). (Pub-
lic/private keypairs are generated using Setup(-), and it holds that
Dec(Enc(m)) = m.) Additionally, our constructions require that
the message space of the homomorphic encryption scheme used is
a field. Any encryption scheme with the above properties, such as
the Paillier [22] or DGK [10, 11], suffices for the purposes of this
work. Next, we introduce the instantiations of each algorithm in
Definition 1:

e SystemSetup(1”¥): Outputs ® = (p, q, g), i.e., the descrip-
tion of a cyclic group G, a generator g of a subgroup of size ¢
of G and prime p s.t. g|lp — 1.

e UserSetup(®): Picks a random value z4 < Z, and sets
ya = g4. Then, it outputs (x4, ya).

e Challenge(ya): Picks a random value r < Z, and sets v =
(ya)". Then, it outputs v = (¢", H(v)).

e Response(y): Computes o = (¢")*4. If H(v) # H(o), the
algorithm aborts. Otherwise, it returns o.

e Verify(o,v): Returns 1 if 0 = v, and 0 otherwise.

e Commit(da,za,ys): Computes (pk, sk) < Setup(1~, g°A"B).

If da = yes, then ma = 0; otherwise, m 4 is selected uni-
formly at random from the message space of Enc. The output
issetto ca = Enc(ma).

e Combine(ca, cgr): Selects a random element s from the mes-
sage space and computes cap = (ca - c¢g)® = Enc((ma +
mgp)-s). f ma = 0and mp = 0, then cap is the encryp-
tion of 0. Otherwise, cap corresponds to the encryption of a
random element from the message space of Enc.

e Open(cap): Computes (pk,sk) < Setup(1™,r) where
r = (yp)** = ¢g"A"B and sets dap = Dec(cap). If
dap = 0, then it outputs yes; otherwise, it outputs no.

A possible execution of our server-led protocol is illustrated in
Figure 3. For clarity, we include both Alice and Bob. However, the
protocol is independently executed by each user, and with no timing
constraints on messages.

The purpose of the challenge/response/verity steps, executed during
the registration phase, is to verify that the new user has knowledge of
the secret key associated with the public parameter she is registering.
In other words, these steps guarantee that the user is not registering
somebody else’s public parameter under her name. The steps also
guarantee that the server does not learn any additional information
that can only be computed using Alice’s private key. This is also
important for Alice, as it would otherwise be possible for the server
to force Alice to produce a valid commitment for Bob by replacing
g with yp = ¢®B. However since the server does not know z g,
it cannot compute H((g")*8). A formal argument for the security
of these steps is provided as proof of Theorem 5 in Appendix A.
To simplify exposition, we omit treatment of the registration phase
from the security proofs presented in Section 5.

4.2 User-Led Matching Protocol

In this Section we present our instantiation of user-led matching.
Our protocol uses a secure pseudo-random function PRF (+), keyed
with Alice and Bob’s shared secret, to generate their commitments.
This allows us to generate additional keys, known only to Alice and
Bob, as discussed below. The keys are used to securely exchange
information between the users through the Server.

The registration phase of the user-led matching protocol is the
same as in the server-led protocol. However for the sake of com-
pleteness we present the instantiation of all algorithms, including
SystemSetup and the four algorithms used in the Registration phase:
UserSetup, Challenge, Response, and Verify.

e SystemSetup(1¥): Outputs & = (p, q, g), i.e., the descrip-
tion of a cyclic group G, a generator g of a subgroup of size ¢
of G and prime p s.t. g|p — 1. (Identical to SystemSetup of
Server-Led protocol.)

e UserSetup(®): Picks a random value x4 < Zg and sets
ya = g°4. Then, it outputs (x4, y4). (Identical to UserSetup
of Server-Led protocol.)

"Note that Enc is semantically secure and thus the adversary cannot
tell if two ciphertexts encrypt the same value.
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Figure 3: Example of server-led matching protocol instance, where the protocol phases (see Figure 1) are executed in the following
order: Registration, Query, and Notify. The server separately executes the entire protocol with both Alice and Bob.

e Challenge(ya): Picks a random value r + Zq and sets
v = (ya)”. Then, it outputs v = (g",H(v)). (Identical
to Challenge of Server-Led protocol.)

e Response(y): Computes o = (¢")"4. If H(v) # H(o),
the algorithm aborts. Otherwise, it returns o. (Identical to
Response of Server-Led protocol.)

o Verify(o,v): Returns 1 if o = v, and 0 otherwise. (Identical
to Verify of Server-Led protocol.)

e Commit(za,yn): Setska = (yB)®4 = g*4"B and outputs
ca = PRF4, (0), where PRF is a pseudorandom function.

e Match(C, S): Outputs M = CN S, where C is the set of all
commitments from Alice and S is the set of all commitments
from all users except for Alice. (Since ka = (yp)*4 =
(ya)™® = g"A"B = kg, if Alice commits to Bob and Bob
commits to Alice, then PRF}, , (0) appears in both C and S.)

e Open(M,z4,{y:}): Outputs all users ¢ for which
PRF ,24,(0) € M. (In other words, given a commitment

from Alice to Bob, outputs “Bob”).

Figure 4 represents a possible execution of our user-led protocol.
During the Registration phase, the server checks if Alice has knowl-
edge of x4 as discussed in the instantiation of the server-led match-
ing protocol. The Check phase of the protocol will only return
matches if Bob has also executed the protocol with the server, and
has committed to Alice. Without loss of generality, in the rest of the
paper we assume that Check is executed after each Commit, and that
therefore the server only checks if the new commitment matches
any existing commitment.

As an extension not show in Figure 4, Alice can optionally compute
k" = PRFy , (1). k" is then used to encrypt an additional message
msga as wa = Fy(msga) using a symmetric encryption scheme
during the Commit phase. w4 is then sent to the server along
with ca. If Bob commits to Alice, the server returns w4 to Bob
(and possibly the corresponding wg to Alice) during the Check
phase. Both Alice and Bob can decrypt wa and wp since they can
reconstruct k’ from g*A*E,

Retrieving Public Parameter Privately. In our user-led matching
protocol, Alice must retrieve Bob’s public parameter before com-
mitting to him. Although knowing that Alice obtained Bob’s public
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_/Check “Check”
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M

Figure 4: Example of user-led matching protocol instance,
where the four phases (Figure 2) are executed in the following
order: Registration, Lookup, Commit, and Check.

parameter does not prove that she will commit to him, this still rep-
resent information leakage. This problem can be mitigated if each
new user could be provided with a complete list of all existing users
after registering. This way, the server learns nothing. Although this
might work for a small number of users (the keys and identifiers of
100,000 users occupy 20-30 MB), it does not scale to millions of
users. Moreover, this discloses the complete list of users enrolled in
the system, which in itself might be sensitive.

A more efficient approach is to use a private information retrieval
(PIR) protocol [6], which allows Alice to request arbitrary identities
without disclosing this information to the server. As an alternative,
assuming that the volume of requests is sufficiently high, Alice can
issue anonymous requests to the server via an anonymizing service
such as Tor [26].

5. PROTOCOL ANALYSIS

In this section we analyze the correctness, efficiency and security of
our server-led and user-led protocol instantiations. In our security
analysis, we use the term adversary to refer to insiders, i.e., protocol

participants. External adversaries are not considered, since their
actions can be mitigated via standard network security techniques,
i.e., confidential and authenticated channels. Our protocols are
secure in the presence of malicious users and semi-honest (also
known as honest-but-curious or passive) server. We refer the reader
to [15] for the formal definitions of the malicious and semi-honest
models. Although we continue our analysis of the server’s behavior
in the semi-honest model, it is important to note that if the server
turns malicious, it can only break the functionality and fairness of
the matchmaking protocol, not the privacy of the user’s choices.

Our scheme requires the underlying homomorphic encryption scheme
to be semantically secure. To formalize this notion, we use the stan-
dard IND-CPA security definition, reported next:

Experiment IND-CPA 4 ¢ (%)
1. Run (pk, sk) < Setup(1~, 7).

2. Adversary A is given pk and eventually outputs two messages
mg, my of its choice.

3. A random bit b is drawn and the encryption Encpi(my) is
returned to A.

4. A outputs bit b’, and the experiment outputs 1 iff b = b'.

DEFINITION 7 (IND-CPA SECURITY). An encryption scheme
& = (Setup, Enc, Dec) has indistinguishable encryptions under
chosen plaintext attack if there exists a negligible function negl such
that for any probabilistic polynomial time (PPT) A,
Pr[IND-CPA 4 ¢(k) = 1] < 1/2 + negl(k).

5.1 Server-Led Matching Protocol

Correctness. Alice and Bob independently run Commit on input
(da,za,yp) and (dB,xB,ya) respectively. Since Setup is deter-
ministic and its inputs (yg)*# from Alice and (y4)®Z from Bob
are identical, the two users compute the same keypair (pk, sk). If
both Alice and Bob issue a yes commitment, i.e., ma = mp = 0,
then cap = (ca-¢cp)® = Enc((0+0) - s) = Enc(0). On the other
hand, if at least one of the participants issues a no commitment, cap
is the encryption of a random element in the message space of Enc.

Computational Complexity. The server can implement Registra-
tion in constant time by storing user information in a hash table.
The cost of the Query and Notify phases is also constant. The space
required for the server to run the protocols grows linearly with the
number of users due to the cost of storing their public parameters
and additional information. Both time and space complexity for
users are constant.

THEOREM 1. Assuming that the underlying homomorphic en-
cryption scheme is semantically secure and that DDH holds in
G, our server-led matching protocol is IND-CxA-secure against a
semi-honest server.

PROOF. We show that an adversary A that has non-negligible
advantage (which we indicate as §(-)) over 1/2 to win the server
matching privacy experiment can be used to break the semantic
security of the homomorphic encryption scheme used to instanti-
ate the protocol. Let SIMs be a simulator that interacts with the



server as follows. SIMg plays the IND-CPA experiment and re-
ceives pk from the IND-CPA challenger. It generates two random
values x4 and zp and sends pk, g®4 and g”Z to A. SIMg then re-
ceives (da,0,dB,0) and (da,1,dB,1) from A. It then sends ch, =
(Mu,0,Mu,1) to the IND-CPA challenger, where u + {A, B}
and my,g3 = 0if dy,s = 0, and m, g is a random value other-
wise. The IND-CPA challenger returns Enc, (m14,5). SIMs sends
{(Enc,i(mius), @), (Encys (ma,p), )} where @ € {A, BY\ {u}
(i.e., if u is A then @ is B, and vice-versa) and b” is a random
bit. A might abort because pk has not been generated using g“4
and g“Z as input of Setup. However, if this is the case, it is
easy to see that this behavior can be used to break DDH in G
as follows. Given a DDH challenge (g,¢"*, g*2, g*3), compute
(pk’, sk') = Setup(1*, g**) and send pk, g*! and g*2 to A. We
have that, with non-negligible advantage over 1/2, xs # =1 - x2 iff
A aborts. Since this violates the assumption that DDH is hard in G,
A cannot determine whether pk was generated using ¢g“* and ¢g*2.

Eventually A outputs b’; SIMs outputs the same value. If b = b,
then { (Encpi (mu,p), w), (Encpr(maq ), @)} is a proper challenge
for A, and therefore b = b with probability 1/2+ §(x). Otherwise,
the challenge reveals no information about b and therefore .4 can
guess correctly with probability 1/2. Therefore, we have that b’ = b
with probability 1/2-(1/2+06(k)+1/2-1/2) =1/2+1/2-6(k).
Since §(-) is non-negligible, also 1/2 - §(-) is non-negligible. This
contradicts the semantic security of the homomorphic encryption
scheme. [

THEOREM 2. Our server-led matching protocol is IND-NCA-
secure against a malicious server.

PROOE. After interacting with the honest server, A learns (y +
mp) - 8. Since y + my is not equal to zero and s is uniformly
distributed in the message space, (y + my) - s does not reveal any
information about mp. [

5.2 User-Led Matching Protocol

Correctness. Alice commits to Bob by computing c4 = PRF, (0),
while Bob commits to Alice with cg = PRF}, ; (0). We have that:

ka=(yp)™ = (¢"7)"* = ¢g"*"P = (¢"*)"P = (ya)*? = ks

Since PRF is deterministic, PRF}, , (0) = PRF (0) and there-
fore co = cB.

Computational Complexity. The protocol is efficient for both
the server and the users. The server can implement Registration,
Lookup and Commit in constant time, and Check in linear time in
the number of commitments from Alice by storing user information
and commitments in two separate hash tables. (In practice, the
number of commitments issued by Alice is negligible compared to
the number of users.) The space required for the server to run the
protocols grows linearly with the number of users and the number of
commitments issued by the users. Both time and space complexity
for users are constant.

THEOREM 3. Assuming that DDH holds in G, our user-led
matching protocol is IND-SMA-secure against a semi-honest server.

PROOF. We show that a simulator SIMy can use A to break
DDH in G as follows. Let (g, g**, g®2, g**) be a DDH challenge,

ie., Plxzs = mizz] = 1/2. SIMy sets the system’s public pa-
rameter to ® = (g,p, q), its public parameter to g”*, the public
parameter of Ug to g“2 and the public parameter of U-s to a ran-
dom element r < G and its commitment to ¢ = PRF 425 (0) (5 is
a random bit). Then, it sends (g, ¢*, g*2, 7, ¢) to A.

A might abort because if g*3 # g2, then c is not a legitimate
commitment of SIMy with either Uy or U;. However, if this is the
case, it is easy to see that this behavior can be used to break DDH
in G, since A would abort if (g, g**, g*2, g**) is not a DDH tuple,
and output b’ otherwise.

Eventually, A outputs its choice b’. SIMy outputs 1 if b # (3, and
a + {0, 1} otherwise. It is easy to see that when b’ #£ 3, SIMy’s
answer is correct iff ,A’s answer is correct. Therefore, SIM¢’s output
is correct with probability 1/2 + 1/4. This violates the assumption
that DDH is hard in G, and therefore A cannot exist. [

THEOREM 4. Assuming that DDH holds in G, our server-led
matching protocol is FCA-secure against a malicious user.

PROOF. We show how a simulator SIM can interact with A to
break DDH in G. SIM receives a DDH challenge (g, g**, %2, ¢*3)
and sets the system parameter to g, Ua’s public parameter to g**
and Up’s public parameter to g“2. A eventually outputs C =
PRF (4e122)(0). Because C' is equal to PRF (4251 (0) with negli-
gible probability if 3 # x1x2, we have that x3 = x1x2 with
overwhelming probability. Therefore (g, g**, g*2, g*?) is a DDH
tuple with overwhelming probability if C' = PRF (4«5)(0). Since
DDH is hard in G, A cannot output win the IND-CMA experiment
with non-negligible probability. [

6. PROTOCOL EXTENSIONS

In this section we present protocol extensions that have been left out
of the explanation of the basic protocols for clarity.

Committing to Users and Keywords. In the user-led matching
protocol, instead of simply committing to Bob, Alice may want to
specify one or more keywords that must be matched by both users,
thus only committing to Bob if he also commits to keyword kw. In
this case, Alice generates her commitment as cq = g“A%BH(kw)
where H(-) is a cryptographic hash function. Bob’s commitment will
match only if he also includes H(kw) as part of his commitment.

Information Transfer. Users of the server-led matching proto-
col might want to exchange additional information in case they
both issue a positive commitment, without relying on additional
communication via the server after executing the protocol. For ex-
ample, if Alice and Bob’s identifiers are nicknames not tied to any
other on-line identity, they will need to exchange email addresses
in order to communicate outside of the matching system. This can
be done as follows. Alice encrypts her identifier id 4 using pk as
ea = Encyi(idp). Similarly, Bob computes eg. e4 and ep are
then sent to the server which, given two the two commitments c 4 and
cB, sends (e4 - (ca -cB)S/) = Enc(ids + "+ (ma+mg)) to Bob
for arandom s’. (Analogously, Enc(idg+(ma+mg)-s’) is sent to
Alice.) If both users commit to each other, then (m4 +mp)-s' =0
and therefore each party receives the other user’s identifier. Other-
wise, (ma +mg) - s’ is uniformly distributed in the message space,
and therefore neither user learns information about the other party’s
identifier.



6.1 Security Extensions
Next, we discuss how to prevent attacks carried out by adversaries
that are outside the adversary model considered thus far.

In both protocols a malicious server can claim that an honest user
issued a commitment that she, in fact, did not generate. In the server-
led matching protocol, after receiving a commitment from Alice,
the server performs the matching computation with two copies of
Alice’s commitment, pretending that one of the copies came from
Bob. (The server can correctly guess Bob’s identity with low, albeit
non-negligible, probability, given a commitment from Alice.) In
the user-led protocol, the server can always return a false match.
Analogously, after the server discloses a match to Alice and Bob,
Bob might claim that he did not commit to Alice.

In other words, the protocols do allow the parties to prove their state-
ments. However, the protocols can be easily modified to guarantee
correctness by requiring users to sign their commitments using any
public-key signature scheme. In case of a dispute, the server can
reveal two commitments (one from Alice and one from Bob) with
valid signatures if and only if it has faithfully followed the protocol.
In the server-led matching protocol, after the server reveals both
signed commitments, Alice decrypts Bob’s commitment to verify
the server’s claim. (Similarly, Bob can verify Alice’s claim.)

7. CONCLUSION

In this paper, we introduced a formal framework for securely match-
ing two or more parties with related interests. We looked at two
different scenarios: privacy-preserving server-led matching, where
a server selects potential matching pairs, then collects and combines
each party’s private preference; and privacy-preserving user-led
matching, where entities are allowed to express their private prefer-
ence for any party.

We presented secure and efficient instantiations of both function-
alities. Security of our protocols is supported by formal proofs,
based on standard assumptions. Users are modeled as malicious
entities, while the server is semi-honest. We also presented several
extensions that enable the protocols to function (partially) with a
fully malicious server.

Our protocols are practical and efficient. The cost of commitment
generation and matching is constant, i.e., it does not depend on the
number of users. Moreover, the cryptographic operations performed
in the protocols are relatively inexpensive and the protocols involve
only a few short messages per phase.

8. REFERENCES

[1] W. Bagga and R. Molva. Policy-based cryptography and
applications. In Financial Cryptography, pages 72-87, 2005.
R. Baldwin and W. Gramlich. Cryptographic protocol for
trustable match making. IEEE Security and Privacy Magazine,
1985.
D. Balfanz, G. Durfee, N. Shankar, D. Smetters, J. Staddon,
and H. Wong. Secret handshakes from pairing-based key
agreements. In In IEEE Symposium on Security and Privacy,
pages 180-196, 2003.
P. Bonatti and P. Samarati. Regulating service access and
information release on the web. In Proceedings of the 7th
ACM Conference on Computer and Communications Security,
CCS ’00, pages 134-143, New York, NY, USA, 2000. ACM.
[5] C. Castelluccia, S. Jarecki, and G. Tsudik. Secret handshakes

(2]

(3]

(4]

10

[6

—_

(71

(8]
(91

(10]

(11]

(12]
(13]

[14]

[15]

[16]
[17]

(18]

(19]

[20]
[21]

[22]

(23]

[24]
[25]
[26]
[27]

(28]
[29]

(30]

from ca-oblivious encryption. In ASTACRYPT, 2004.

B. Chor, E. Kushilevitz, O. Goldreich, and M. Sudan. Private
information retrieval. J. ACM, 45(6):965-981, 1998.

E. De Cristofaro, P. Gasti, and G. Tsudik. Fast and private
computation of cardinality of set intersection and union. In
CANS, pages 218-231, 2012.

Cuddlr. http://cuddlrapp.com/.

A. Cuevas, P. El Khoury, L. Gomez, A. Laube, and

A. Sorniotti. A security pattern for untraceable secret
handshakes. In International Conference on Emerging
Security Information, Systems and Technologies
(SECURWARE), 2009.

I. Damgard, M. Geisler, and M. Krgigard. A correction to
efficient and secure comparison for on-line auctions.
Cryptology ePrint Archive, Report 2008/321, 2008.

I. Damgérd, M. Geisler, and M. Krgigard. Homomorphic
encryption and secure comparison. Journal of Applied
Cryptology, 1(1):22-31, 2008.

Facebook. http://www.facebook.com/.

Facebook. Press Release.
http://www.prnewswire.com/news-releases/
facebook-reports-third-quarter—
2013-results—-229923821.html.

M. Freedman, K. Nissim, and B. Pinkas. Efficient private
matching and set intersection. In Eurocrypt, pages 1-19.
Springer-Verlag, 2004.

0. Goldreich. Foundations of Cryptography: Volume 2, Basic
Applications. Cambridge University Press, 2004.

Hitch. http://www.hitchapp.co/.

J. Holt, R. Bradshaw, K. Seamons, and H. Orman. Hidden
credentials. In WPES, pages 1-8. ACM, 2003.

Seny Kamara, Payman Mohassel, Mariana Raykova, and
Saeed Sadeghian. Scaling private set intersection to
billion-element sets. Technical Report MSR-TR-2013-63,
June 2013.

N. Li, W. Du, and D. Boneh. Oblivious signature-based
envelope. Distributed Computing, 17(4):293-302, 2005.
LinkedIn. http://www.linkedin.com/.

C. Meadows. A more efficient cryptographic matchmaking
protocol for use in the absence of a continuously available
third party. In IEEE Symposium on Security and Privacy,
pages 134-137. IEEE Computer Society, 1986.

P. Paillier. Public-key cryptosystems based on composite
degree residuosity classes. In EUROCRYPT’99, volume 1592
of LNCS, pages 223-238, 1999.

J. Shin and V. Gligor. A new privacy-enhanced matchmaking
protocol. In Proceedings of the Network and Distributed
System Security Symposium (NDSS), 2008.

J. Shin and V. Gligor. A new privacy-enhanced matchmaking
protocol. In IEICE Transactions, 2013.

Tinder. http://www.gotinder.com/.

Tor. https://www.torproject.org.

G. Tsudik and S. Xu. A flexible framework for secret
handshakes. In Privacy Enhancing Technologies, 2006.
Twitter. http://www.twitter.com/.

Qi Xie and U. Hengartner. Privacy-preserving matchmaking
for mobile social networking secure against malicious users.
In Privacy, Security and Trust (PST), 2011 Ninth Annual
International Conference on, July 2011.

K. Zhang and R. Needham. A private matchmaking protocol,
1998.


http://cuddlrapp.com/
http://www.facebook.com/
http://www.hitchapp.co/
http://www.linkedin.com/
http://www.gotinder.com/
https://www.torproject.org
http://www.twitter.com/

APPENDIX
A. CHALLENGE-RESPONSE-VERIFY
STEPS IN THE REGISTRATION PHASE

In this section, we first show that the user can output a correct value
o for the challenge-response-verify steps in the Registration phase
(in both protocols) for a given public parameter g“4 only if she has
knowledge of x 4, under the DDH assumption. Then, we prove that
the server does not learn any new information, besides the fact that
the user has knowledge of x 4, from the execution of the protocol.
More formally:

THEOREM 5. Let r <+ {0,1}", y = ¢4, v = H(y"), and
v = (g",H(v)). Assuming that DDH is hard in G and that H(-) is a
collision-resistant hash function, for all PPT algorithms C' there ex-
ists a negligible function negl(-) such that Pr [C(y,v) = g4 "] <
negl(k).

PROOF. Assume that there exists a PPT algorithm C' that outputs
g®4 " oninput (y, ) with some non-negligible probability indicated
with §(x). We argue that the existence of C' violates the assumption
on the hardness of DDH in G, since a simulator SIMy can use C' to
answer a DDH challenge with probability § (k).

Let ch = (g,9"",g"%,g"®) be a DDH challenge. SIMy invokes
C(g"", (¢"2,H(g"®))). C can perform one of the following three
actions: (1) it outputs o = ¢*3; (2) it outputs o # ¢g“3; (3) it
aborts. (SIMy can trivially distinguish these three outcomes.) If C'
performs (1), then SIMy outputs “ch is a DDH tuple”. Otherwise,
it outputs “ch is not a DDH tuple”.

We argue that SIMy’s output is correct with probability d(x). In
particular, action (1) must be performed by C' with probability §(x)
when x3 = x1 - x2, i.e., when ch is a DDH tuple. If ch is not a
DDH tuple, then C' cannot output o = g“3 (except with negligible
probability), because z3 has been selected independently from 1
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and x2. Therefore, C' either performs (2) or (3) with overwhelming
probability.

This is in violation of the assumption that DDH is hard in G. There-
fore, (k) < negl(k). O

To show that the adversary learns no new information, besides the
fact that the user knows the secret key associated with her public pa-
rameter, we now show that the server can construct a valid challenge
only if it can compute the response to the challenge on its own, e.g.,
with knowledge of r.

THEOREM 6. Let r < {0,1}" and y = g®4. Assuming that
DDH is hard in G, for all PPT algorithms S there exists a negligible
function negl(-) such that Pr [S(y,¢") = H(y")] < negl(k).

PROOF. Assume that there exists a PPT algorithm S that outputs
H(y") on input (y, g") with some non-negligible probability §(x).
We argue that the existence of S violates the assumption on the
hardness of DDH, since a simulator SIMg can use S to answer a
DDH challenge with probability §(x).

Let ch = (g,9"',g"%,9"?) be a DDH challenge. SIMg invokes
S(g®*, ¢g*?). If S outputs H(g"?), then SIM g outputs “ch is a DDH
tuple”. Otherwise, it outputs “ch is not a DDH tuple”.

We argue that SIMg’s output is correct with probability 6(x). In
particular, S outputs H(y") with probability § (x) when zs = x1-z2,
i.e., when ch is a DDH tuple. If ch is not a DDH tuple, then S cannot
output 0 = g”3 because x3 has been selected independently from
z1 and z2 (except with negligible probability).

This is in violation of the assumption that DDH is hard in G. There-
fore, §(x) must be negligible. []



